Chapter 6. Materials Subjected to Absolute Cold Conditions: Properties and Application Characteristics in Pursuit of Sustainability

$39.50

Gastón Sanglier Contreras, Roberto Alonso González Lezcano Eduardo José López Fernández and Carlos Miguel Iglesias Sanz
Escuela Politécnica Superior, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Alcorcón, Madrid, Spain

Part of the book: Sustainable and Healthy Building Environments

Abstract

The scientific understanding of the concepts of cold and heat that have accompanied the human species throughout history has not been easy. The concept of heat is more widespread and studied among us, as well as its consequences. However, we wonder what would happen if we lowered the temperature a lot? As the temperature begins to drop, it can be predicted that the atoms tend to slow down, slowing down their speed, and when this happens, existing theories begin to tremble. The laws governing the atomic world, so small and tiny, do not allow objects (atoms, protons, neutrons, etc.) to stop. This is where quantum physics appears, it tells us how particles behave at the atomic level, and they appear in a forceful way when we approach temperature values around absolute zero. If atoms stopped moving, they would have zero energy, however, quantum mechanics makes it impossible to have this kind of energy.

Keywords: absolute cold, materials, quantum physics, superconductivity, mechanical properties, sustainable materials


References


Abudaia, F. B., Evans, J. T. and Shaw, B. A. (2003). Characterization of Retained Austenite
in Case Carburized Gears and its Influence on Fatigue Performance, Gear
Technology, May/June 2003.
Air Force Growth (www.Afgrow.net). (2009). Handbook for Damage Tolerant Design.
Fracture and Fatigue Crack Growth Analysis software tool.
ASM. Mechanical testing and evaluation. (2000). ASM Handbook, vol. 8, pp. 861-872.
Bas J. A. (1998). Comparative Study of the Methods for Testing the Corrosion Resistance
of Stainless Steels. Proceddings of the Powder Metallurgy World Congress, Granada, Spain.
Besada, J. L., El i ees, M., Planas, J., Sánchez-Miñana, J. and García J. A. (2003). A new
technique of deformation measurements based on microwave resonant cavities. 10th
European Microwave Conference.
Browne, R. D. and Bamforth, P. B. (1981) The use of concrete for cryogenic storage. A
summary of research, past and present. 1st. Int. Conf. Cryogenic Concrete. Newcastle.
Bruggeling, A. S. G. (1979). Concrete Storage Vessels. Research Report. Delft University
of Technology.
Colombier, R. and J. Hochmann, (1968). Aceros Inoxidables Aceros Refractaruios,
[Stainless Steels Refractory Steels] Ira ed. URMO, España pp.28.
Contreras, G. S., Lezcano, R. A. G., Fernández, E. J. L., & Sanz, C. M. I. (2022). Building
Materials and Their Impact on the Environment. Contemporary Engineering Sciences
15(1):51-61.
Corres, H., Planas, J. and Ellees, M. (1963). Informe técnico [White Paper]. AUXINI, S.
A. (1981). Eakin, B.E. Below ground storage of liquefied Nature Gas in prestressed
concrete Institute of Gas Technology. Rep. n.° 8.
Ehiers, G. F. L. (1990). Thermal stability. Engineering Design for Plastics, Baer, Eric (Ed),
New York, Reinhold Publishing Co.
Ellees, M. (1981). Prestressed cryogenic concrete. A review of testing in Spain. 1st. Int.
Conf. Cryogenic Concrete. Newcastle.
Ellees, M., Planas, J. (1982). Measurement of tensile strength of concrete at very low
temperaturas. Journal of the American Concrete Institute. V. 79.
Ellees, M., Planas, J., Caballero, L., Morena, J. M., Sánchez-Gálvez, V., Mestre, A., Astiz,
M.A., Valiente, A. (1979). Comportamiento a la temperatura del GNL de un sistema
tendón [Behavior at LNG temperature of a tendon system.] Hormigón y Acero.,
[Concrete and Steel] vol. 30, Nº 130.
Ellees, M., Rostasy, F., Faas, W. M. (1982). Cryogenic behaviour of Materials for
prestressed concrete. FIP Report.
German, R. M. (1996). Sintering Theory and Practice. John Wiley and Sons, Inc. New York.
Gray, D., Hoa, S. V. and Tsai, S. W. (2003). Composite Materials: Design and
Applications. RC Press, Boca Raton edition.
Gustafson, C. G. and M. Hojo. (1987). Delamination fatigue crack growth in unidirectional
graphite/epoxy laminates. Journal of Reinforced Plastics and Composites, 6:36-52.
Hojo, M., Tanaka, K., Gustafson, C.G. and Hayashi, R. (1987). Delamination fatigue crack
growth in unidirectional graphite/epoxy laminates. Composites Science and Technology, 29:273-202.
Huang, J. Y., Zhu, Y. T and Liao, X. Y. (2003). “Microstructure of cryogenic treated M2
tool steel”, Mat Science & Engineering, A339, pp. 241-244, 2003.
Ihchaurza, A. (1981). Aceros inoxidables y Aceros resistentes al calor [Stainless steels and
heat resistant steels.] Ira ed, Limusa, México, capitulo 6.
Kara, S., Erdem, S., & Lezcano, R. A. G. (2021). MgO-Based Cementitious Composites
for Sustainable and Energy Efficient Building Design. Sustainability, 13(16), 9188.
Mallick. P.K. (1997). Composites Engineering Handbook. Materials Enginerring. Marcel
Dekker, Inc. Edition.
Miravete, A. (2007). Materiales Compuestos [Composite Materials], vol. 1. Reverté edition.
Molinari, A., Pellizzari, M. and Gialanella, S. (2001). Effect of deep cryogenic treatment
on the mechanical properties of tool steels, J. of Mat. Proc. Tech., 118, pp. 350-355.
Rodríguez, F. (1980). Principles of Polymer Systems, New York, McGraw Hill.
Rostasy F., Schneider, U., Wiedemann, G. (1979). Behaviour of mortar and concrete at
extremely low temperatures. Cement and Concrete Research. Vol. 9 (365-376).
Rostasy, F. and Wiedemann, G. (1981). Strength deformation and thermal strains of
concrete at cryogenic conditions. 1st. Int. Conf. on Cryogenic Concrete. Newcastle.
Schanabel, W. (1981). Polymer Degradation, Munchen, Hanser International.
Turner, F. H. (1979). Concrete and cryogenics. Cement and Concrete Association.
Zhirafar, S., Rezaeian, A. and Pugh, M. (2007). Effect of cryogenic treatmnet on the
mechanical properties of 4340 steel. J. of Mat. Proc. Tech. 186, pp. 298-303.
Ziada, M., Erdem, S., Tammam, Y., Kara, S., & Lezcano, R. A. G. (2021). The effect of
basalt fiber on mechanical, microstructural, and high-temperature properties of fly
ash-based and basalt powder waste-filled sustainable geopolymer mortar.
Sustain ability (Switzerland), 13(22). https://doi.org/10.3390/su132212610.

Category:

Publish with Nova Science Publishers

We publish over 800 titles annually by leading researchers from around the world. Submit a Book Proposal Now!