Table of Contents
Preface
Acknowledgments
Symbols and Abbreviations
Chapter 1. Introduction
Chapter 2. Glass Transition and Bound Water
Chapter 3. Experimental Techniques
Chapter 4. Glass Transition of Polysaccharides
Chapter 5. Glass Transition of Lignin and Related Model Polymers
Index
Reviews
“I was fortunate to receive an advance copy of this manuscript and read it with great interest. Its subject is of utmost relevance to polymer scientists and will be a very welcome addition to their professional literature when it will be published. Polymers from renewable resources arguably represent the macromolecular materials of the XXI century and this book deals with a major aspect of their properties applied to two of their most important families, namely polysaccharides and lignins. The glass transition is a fundamental feature in this context, particularly in the way it is explored, viz. by studying it as a function of the moisture content in these mostly hydrophilic materials. The so-called “bound water” has intrigued and challenged researchers for decades and it finds here an illuminating treatment. The book deals with its subject with a comprehensive and thorough approach and discusses the results in a highly convincing fashion. In other words, this monograph is indeed a trove of rich and deep information. Apart from these scientific qualities, I fully appreciated the inclusion of a very detailed experimental treatment, which is so important if one should be sure to obtain reliable results, which are not straightforward in this particular context. It follows therefore that I strongly recommend this original volume to polymer scientists and industrial practitioners, as well as to both undergraduate and research students.” -Professor Alessandro Gandini, Universidade de São Paulo, Escola de Engenharia de São Carlos, Departamento de Engenharia de Materiais
“When polymeric biomaterials are designed, the role of “intermediate water concept” takes important role. Structural/dynamical change of water acts crucial role on bio-compatibility/bio-inertness/non-fouling based on interfacial structure/dynamics at bio-interfaces. In order to design novel bio-compatible materials, it is important to know specific features of green polymers characterised via interaction with water molecules. This book describes the molecular relaxation of green polymers, especially the thermodynamic concept of wide range of green polymers, and the bound water. Historical background of research field of “water-biomaterial interaction” indicates that scientists have paid attention to the molecular motion of polymers in the presence of water for a long time. In this book, thermodynamic concept of green polymers and the bound water is found in Chapter 2. Various techniques to measure the molecular motion of green polymers in wet conditions are explained in Chapter 3. Glass transition behaviour of green polymers and the model compounds is described in chapters 4 and 5. It is recommended to young scientists who are investigating bio-compatible materials to read this book to develop background knowledge of “nature”. I plan on finding ways to share this book with my teaching class as well as laboratory meetings in terms of design of innovative materials in the coexistence of water. I believe that all scientists will become more aware of the role of water molecules at the water-material interfaces after reading this book.” -Masaru Tanaka, PhD, Professor, Soft Materials Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, Japan