The Infinite History of NOW: A Timeless Background for Contemporary Physics

$98.00

Davide Fiscaletti and Amrit Srecko Sorli
SpaceLife Institute, S. Lorenzo in Campo (PU), Italy

Series: Physics Research and Technology
BISAC: SCI055000

The development of theoretical physics can be seen as a continuous improvement of the models of space and time. In particular, the beginning of the 21st century brought a new vision into quantum physics: quantum particles move in space only, time measured with clocks is merely a numerical order of particles’ motion. This so called “a-temporal” view of physics offers a radically new understanding of the micro and macro universe. On the basis of the notion of time as a numerical order of material change, in the book “The Infinite History of NOW: A Timeless Background for Contemporary Physics”, the authors Davide Fiscaletti and Amrit Sorli introduce suggestive unitary and holistic perspectives in the interpretation and explanation of several physical phenomena of contemporary physics.

It is shown that the concept of time as a mathematical quantity measuring the numerical order of material changes resolves Zeno problems on motion, hypothetical travel into past, twin paradox of special relativity and allow new perspectives to be opened in the interpretation and explanation of Einstein-Podolski-Rosen experiment and of non-local correlations between subatomic particles. Moreover, a timeless description of the gravitational interaction and the idea of a timeless three-dimensional quantum vacuum as a fundamental bridge between gravity and quantum behaviour of matter are developed.

Finally, in the second part of the book, after analysing the fundamental features of some relevant unitary theories of contemporary physics (such as superstring theory and loop quantum gravity) and making some considerations about being versus becoming and atomism versus monism in modelling physical reality at a fundamental level, it is shown that the replacement of the concept of time with the numerical order of material change provides a new suggestive interpretation of the fundamental unitary field theories opening the doors to a real “timeless theory of everything”. The use of simple and fluid language makes the book accessible to the public worldwide. (Imprint: Nova)

 

 

Table of Contents

Table of Contents

Preface

About the Authors

Introduction

Chapter 1. Timeless Universe

Chapter 2. Towards a Unified View of the Physical World

Index


Reviews

“In their book The Infinite History of Now, the authors Davide Fiscaletti and Amrit Srecko Sorli present a revolutionary concept of our understanding of time. I remember a discussion with my colleagues about the question if time, as a physical quantity, can be completely removed from physics (in principle, of course). In a mechanical concept, time is a measure of change, for example, a change of position of an object.” READ MORE…Dr. Lubos Neslusan, Astronomical Institute, Slovak Academy of Sciences


References

Introduction

[1] Einstein, A. Relativity: the Special and General Theory; Henry Holt: New York, NY, 1920; Bartleby.com, 2000, www.bartleby.com/173/.

Chapter 1

[1] Gózdz, A.; Stefanska, K. Jour Phys: Conf Ser 2008, 104, 012007.
[2] Sorli, A.; Fiscaletti, D.; Klinar, D. Phys Ess 2010, 23, 330-332.
[3] Sorli, A.; Fiscaletti, D.; Klinar, D. Phys Ess 2011, 24, 11-15.
[4] Mach, E. Die Mechanik in ihrer Entwicklung historisch-kritsch dargestellt; Barth: Leipzig, DE, 1883; English translation: The Science of Mechanics; Open Court: Chicago, IL, 1960.
[5] Yourgrau, P. A World Without Time: The Forgotten Legacy of Gödel And Einstein; Basic Books: New York, NY, 2006.
[6] Barbour, J.; Bertotti, B. Proc Royal Soc A 1982, 382, 295–306.
[7] Barbour, J. Class Quant Grav 1994, 11, 2853-2873.
[8] Barbour, J.; Foster, B. Z.; Murchadha, N. O’ Class Quant Grav 2002, 19, 3217–3248; e-print arXiv:gr-qc/0012089.
[9] Woodward, J. F. Found Phys Lett 1996, 9, 1-23.
[10] Rovelli, C. Phys Rev D 1991, 43, 442-456.
[11] Rovelli, C. Nuovo Cimento 1995, 110B, 81-93.
[12] Rovelli, C. In Physics meets philosophy at the Planck scale; Callender, C.; Huggett, N.; Eds.; Cambridge University Press: Cambridge, MA, 2001.
[13] Rovelli, C. Phys World 2003, 7, 1-5.
[14] Rovelli, C. Quantum gravity; Cambridge University Press: Cambridge, MA, 2004.
[15] Barbour, J. (2009). The Nature of Time. http://arxiv.org/abs/0903.3489
[16] Caticha, A. (2010). Entropic dynamics, time and quantum theory. arXiv:1005.2357v3 [quant-ph]
[17] Palmer, T. N. (2009). The Invariant Set Hypothesis: A New Geometric Framework for the Foundations of Quantum Theory and the Role Played by Gravity. http://arxiv.org/abs/0812.1148
[18] Girelli, F.; Liberati, S.; Sindoni, L. (2009). Is the notion of time really fundamental? http://arxiv.org/abs/0903.4876
[19] Prati, E. (2009). The nature of time: from a timeless hamiltonian framework to clock time metrology. arXiv:0907.1707v1
[20] Licata, I. “Dinamica reticolare dello spazio-tempo”, In Inediti Scientifici Andromeda, 27; Bologna, IT, 1989.
[21] Licata, I. Hadronic Journal 1991, 14, 225-250.
[22] Sorli, A.; Sorli, I. K. Front Persp 2005, 14, 38-40.
[23] Sorli, A.; Fiscaletti, D. Phys Ess 2012, 25, 141-143.
[24] Manaresi, R.; Selleri, F. Found Phys Lett 2004, 17, 65-79.
[25] Selleri, F. “Space and time should be preferred to spacetime – 1”, International workshop Physics for the 21st century, 5-9 June 2000.
[26] Selleri, F. “Space and time should be preferred to spacetime – 2”, International workshop Physics for the 21st century, 5-9 June 2000.
[27] Duffy, M.; Levy J. eds. Ether space-time & cosmology; Apeiron: Montreal, CA, 2009, Vol. 3.
[28] Deutsch, D. The Fabric of Reality; Allen Lane The Penguin Press: London, UK, 1997; p. 263.
[29] Bohm, D. Quantum theory; Prentice-Hall: New York, NY, 1951.
[30] Fiscaletti, D.; Sorli, A. Phys Ess 2008, 21, 245-251.
[31] Fiscaletti, D.; Sorli, A. Prespacetime Journal 2010, 1, 883-898.
[32] Bohm, D. Phys Rev 1952, 85, 166-193.
[33] Bohm, D. Phys Rev 1953, 89, 458-466.
[34] Bohm, D. In Symposium on the foundation of modern physics – 1987; Lahti, P. and Mittelstaedt, P.; Eds.; World Scientific Publishing Co: Singapore, SI, 1988.
[35] Bell, J. S. Physics 1964, 1, 195-200.
[36] Chew, G. Sc Prog 1960, 51, 529-539.
[37] Bohm, D. Wholeness and Implicate Order; Routledge & Kegan Paul: London, UK, 1980.
[38] Bohm, D.; Hiley, B. J. The undivided universe: an ontological interpretation of quantum theory; Routledge: London, UK, 1993.
[39] Hiley, B. J. “Non-commutative geometry, the Bohm interpretation and the mind-matter relationship”, in Proc. CASYS’2000, Liege, Belgium, Aug. 7-12, 2000.
[40] Fiscaletti, D. Prospettive alla ricerca del graal. Verso una visione unitaria di spazio, materia e vita; Aracne Editrice: Roma, IT, 2010.
[41] Sbitnev, V. I. Kvantovaya Magiya 2008, 5, 1101-1111; URL http://quantmagic.narod.ru/volumes/VOL512008/p1101.html.
[42] Sbitnev, V. I. International Journal of Bifurcation and Chaos 2009, 19, 2335-2346; e-print arXiv:0808.1245v1 [quant-ph].
[43] Fiscaletti, D.; Sorli, A. Annales UMCS Sectio AAA: Physica 2012, 57, 47-72.
[44] Wharton, K. B. Found Phys 2007, 37, 159-168.
[45] Fiscaletti, D.; Sorli, A. IUP Jour Phys 2010, 3, 34-49.
[46] Fiscaletti, D.; Sorli, A IUP Jour Phys 2011, 4, 34-49.
[47] Eckle, P.; Pfeiffer, A. N.; Cirelli, C.; Staudte, A.; Dörner, R.; Muller, H. G.; Büttiker, M.; Keller, U. Science 2008, 322, 1525-1529.
[48] Pirandola, S.; Braunstein, S. L.; Mancini S.; Lloyd S. Eur Lett 2008, 84, 20013-1-20013-6.
[49] Hegerfeldt, G. C. Phys Rev Lett 1994, 72, 596 – 599.
[50] Whong Chao Wou (2008). The Imaginary Time in the Tunneling Process. http://arxiv.org/abs/0804.0210.
[51] Devetak, I.; Shor, P. V. Communications in Mathematical Physics 2005, 256, 287-303.
[52] Erickson, G. W. Phys Rev Lett 1971, 27, 780-783.
[53] Jaffe, R. L. Phys Rev D 2005, 72, 021301, 1-5; e-print http://arXiv:hep-th/0503158v1.
[54] Klimchitskaya, G. L.; Mohideen, U.; Mostepanenko, V. M. Rev Mod Phys 2009, 81, 1827-1885.
[55] Beck, C.; Mackey, M. C. Fluct Noise Lett 2007, 7, C27-C35.
[56] Bettini, A. Introduction to elementary particle Physics; Cambridge University Press: Cambridge, Ma, 2008.
[57] Rubakov, V. A Phys–Usp. Adv Phys Sc 2007, 50, 390–396.
[58] Sahni, V. Lect Not Phys 2004, 653, 141-180; e-print arxiv.org/abs/astro-ph/0403324v3.
[59] Chernin, A. D. Phys–Usp. Adv Phys Sc 2008, 51, 253–282.
[60] Padmanabhan, T. “Darker side of the Universe”, 29 International Cosmic Ray Conference Pune, 10, 47-62, 2005.
[61] Sorli, A. Jour Adv Phys 2012, 1, 110-112.
[62] Chiatti, L. (2012). The transaction as a quantum concept. arXiv.org/pdf/1204.6636
[63] Licata, I. Eur Phys Jour 2013.
[64] Fiscaletti, D.; Sorli, A. “Perspectives about quantum mechanics in a model of a three-dimensional quantum vacuum where time is a mathematical dimension”, in preparation, 2014.
[65] Fiscaletti, D.; Sorli, A. “Energy density of space and quantum behaviour”, in preparation, 2014.
[66] Penrose, R. The Emperor’s New Mind; Oxford University Press: Oxford, UK, 1989.
[67] Penrose, R., The Road to Reality; Oxford University Press: Oxford, UK, 2004.
[68] Sakharov, A. D. Doklady Akad. Nauk S.S.S.R. 1967, 177, 70-71.
[69] Haisch, B.; Rueda, A.; Puthoff, H. E. Phys. Rev A 1994, 48, 678-694.
[70] Rueda, A.; Haisch, B. (2005). Gravity and the quantum vacuum inertia hypothesis. arXiv:gr-qc0504061v3
[71] Puthoff, H. E. Found Phys 2002, 32, 927-943.
[72] Consoli, M. (2009). Ultraweak excitations of the quantum vacuum as physical models of gravity. arXiv:0904.1272v2 [gr-qc]
[73] Consoli, M. In: Vision of oneness; Licata, I.; Sakaji, A.; Eds.; Aracne Editrice: Rome, IT, 2011.
[74] Einstein, A. Sitz. Ber. Kon. Preus, Ak. Wiss 1916, 688.
[75] Loinger, A. (1998). The Gravitational Waves are Fictitious Entities. http://xxx.lanl.gov/abs/astro-ph/9810137
[76] Loinger, A. (2004). The Gravitational Waves are Fictitious Entities-II. http://arxiv.org/vc/astro-ph/papers/9904/9904207v1.pdf
[77] Ciufolini, I.; Gorini, V. (2004). Gravitational Waves, Theory and Experiment (An Overview). http://bookmarkphysics.iop.org/fullbooks/ 0750307412/ciufoliniover.pdf
[78] Schorn, H-J. Int Jour Theor Phys 2001, 40, 1427-1452.
[79] Shojai, A.; Shojai, F. Phys Scr 2001, 64, 413-416.
[80] Shojai, F.; Shojai, A. (2004). Understanding quantum theory in terms of geometry. arXiv:gr-qc/0404102 v1
[81] Sorli, A.; Fiscaletti, D. Electr Jour Theor Phys 2005, 2, 7-13.
[82] Friedlander, M. W. A Thin Cosmic Rain: Particles from Outer Space; Harvard University Press: Cambridge, MA, 2000.
[83] Hawking, S. W. A brief history of time; Bantam books: New York, NY, 1998.
[84] Hawking, S. W.; Penrose R. The Nature of Space and Time; Princeton University Press: Princeton, UK, 1996.

Chapter 2

[1] Dirac, P. A. M. Nature 1951, 168, 906-907.
[2] Sakharov, A. D. Doklady Akad. Nauk S.S.S.R. 1967, 177, 70-71.
[3] Rugh, S. E.; Zinkernagel, H. Stud Hist Phil Mod Phys 2002, 33, 663-705.
[4] Timashev, S. F. (2011). Physical vacuum as a system manifesting itself on various scales – from nuclear physics to cosmology. arXiv:1107.pdf [gr-qc]
[5] Laszlo, E. Science and the Akaschic Field; Inner Traditions: Rochester, NY, 2004.
[6] Laszlo, E. Risacralizzare il cosmo; Apogeo/Urra: Milano, 2008.
[7] Wheeler, J. A. In The Ghost in the Atom; Davies, P. C. W.; Brown, J. R.; Eds.; Cambridge University Press, Cambridge, MA, 2000.
[8] Clifford, W., cited by Milo Wolf and Geoff Haselhurst in “Einstein’s Last Question”, VIA: Jour Integral Thinking for Visionary Action 2005, 3, 1.
[9] Einstein, A. Nature 1930, 125, 897-898.
[10] Wolff, M.; Haselhurst, G. Front Persp 2004, 13, 6-15.
[11] Fiscaletti, D.; Sorli, A. Front Persp 2005, 14, 43-54.
[12] Fiscaletti, D.; Sorli, A. Front Persp 2006, 15, 23-28.
[13] Greene, B. The Elegant Universe: Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory; Vintage Books: New York, NY, 1999.
[14] Kaku, M. Introduction to Superstrings and M-Theory; Springer: Berlin, DE, 1999.
[15] Rovelli, C. (1997). Loop Quantum Gravity. Living Reviews in Relativity, http://relativity.livingreviews.org/Articles/lrr-1998-1/.
[16] Rovelli, C. In Physics meets philosophy at the Planck scale; Callender C.; Huggett, N.; Eds.; Cambridge University Press: Cambridge, MA, 2001.
[17] Rovelli, C. Phys World 2003, 7, 1-5.
[18] Rovelli, C. Quantum gravity; Cambridge University Press: Cambridge, MA, 2004.
[19] Rovelli, C. (2010). A new look at loop quantum gravity. arXiv:1004.1780v1 [gr-qc]
[20] Garrett Lisi, A. (2007). An exceptionally simple theory of everything. arXiv:0711.0770v1 [hep-th]
[21] Garrett Lisi, A.; Weatherall, J. O. “A geometric theory of everything”, Scientific American, December 2010, pp. 55-61.
[22] Geroch, R. General Relativity from A to B; University of Chicago Press: Chicago, IL, 1978; pp. 20-21.
[23] Smolin, L. (2008). The Problem of Time in Gravity and
Cosmology, Lecture 1. http://pirsa.org/pdf/_les/dd4b88c3-7acd-4ea8-91fc-9302bc248e38.pdf
[24] Bohm, D.; Hiley, B. The Undivided Universe: an Ontological Interpretation of Quantum Theory: Routledge: London, UK, 1993.
[25] Hiley, B.; Callaghan, R. (2010). The Clifford Algebra approach to Quantum Mechanics A: The Schrödinger and Pauli Particles. arXiv:1011.4031 [math-ph]
[26] Silberstein, M.; Stuckey, W. M.; Cifone, M. Stud Hist Phil Mod Phys 2008, 39, 736-751.
[27] Stuckey, W. M.; Silberstein, M.; Cifone, M. Found Phys 2008, 38, 348-383; e-print arXiv:quant-ph/0510090.
[28] Silberstein, M.; Stuskey, W. M.; McDeVitt, T. (2012). Being, becoming and the undivided universe: a dialogue between Relational Blockworld and the Implicate Order concerning the unification of relativity and quantum theory. arXiv:1108.2261v3 [quant-ph]
[29] Cramer, J. G. Phys Rev D 1980, 22, 362–376.
[30] Cramer, J. G. Found Phys 1983, 13, 887–902.
[31] Cramer, J. G. Rev Mod Phys 1986, 58, 647–88.
[32] Cramer, J. G. Int Jour Theor Phys 1988, 27, 227-236.
[33] Kastner, R. The new transactional interpretation of quantum theory: the reality of possibility; Cambridge University Press: Cambridge, MA, 2012.
[34] Fiscaletti, D. Electr Jour Theor Phys 2005, 2, 15-20.
[35] Fiscaletti, D.; Sorli, A. Scient Inq 2007, 8, 65-80.
[36] Fiscaletti, D. Scient Inq 2008, 9, 173-200.
[37] Fiscaletti, D. IUP Jour Phys 2010, 3, 7-28.
[38] Fiscaletti, D. Prospettive alla ricerca del graal. Verso una visione unitaria di spazio, materia e vita; Aracne Editrice: Roma, IT, 2010.
[39] Christian, J. (2007). Absolute being vs relative becoming. arXiv:gr-qc/0610049v2
[40] Fiscaletti, D. Jour Adv Phys 2012, 1, 150-160.
[41] Fiscaletti, D.; Sorli, A. “Perspectives about quantum mechanics in a model of a three-dimensional quantum vacuum where time is a mathematical dimension”, in preparation, 2014.
[42] Fiscaletti, D.; Sorli, A. “Energy density of space and quantum behaviour”, in preparation, 2014.
[43] Albert, D. Z. Quantum Mechanics and Experience; Harward University Press: Cambridge, MA, 1992.
[44] Philippidis, C.; Dewdney, C.; Hiley, B. Nuovo Cimento B 1979, 52, 15-28.
[45] Fiscaletti, D. I fondamenti nella meccanica quantistica. Un’analisi critica dell’interpretazione ortodossa, della teoria di Bohm e della teoria GRW; CLEUP: Padova, 2003.
[46] Fiscaletti, D. I gatti di Schrödinger. Meccanica quantistica e visione del mondo; Muzzio Editore: Rome, 2007.
[47] Dewdney, C. In Quantum Uncertainties – Recent and Future Experiments and Interpretations; Honig, W M.; Kraft, D. W.; Panarella, E.; Eds.; NATO ASI Series; Plenum Press: New York, NY; 1987; pp. 19-40.
[48] Bergia, S. In Quanti Copenaghen? Bohr, Heisenberg e le interpretazioni della meccanica quantistica: Tassani. I.; Ed.; Il Ponte Vecchio: Cesena, IT, 2004; pp. 179-199.
[49] Wolff, M. Phys Ess 1993, 6, 181-203.
[50] Wolff, M. In From the Hubble Radius to the Planck Scale; Amoroso R. L. and others; Eds.; Kluwer Acad. Publ.: Amsterdam, NE, 2002; pp. 517-524.
[51] Wolff, M. (2002). Origin of the Natural Laws in a Binary Universe. www.quantummatter.com/PNASLast.html
[52] Mead, C. Collective Electrodynamics; MIT Press: Cambridge, MA, 2000.

Publish with Nova Science Publishers

We publish over 800 titles annually by leading researchers from around the world. Submit a Book Proposal Now!