Publish with Nova Science Publishers
We publish over 800 titles annually by leading researchers from around the world. Submit a Book Proposal Now!
$39.50
Safia Alleg and Meriem Harkat
Laboratory of Magnetism and Spectroscopy of Solids (LM2S), Department of Physics, Badji Mokhtar Annaba University, Annaba, Algeria
Part of the book: What to Know about Hydroxyapatite
Nanocrystalline hydroxyapatite (HAp) has been successfully used for biomedical applications during the last decades owing to its chemical similarity with natural apatite, its remarkable biocompatibility, bio[1]affinity, and bioactivity that can be related to its crystal structure. HAp is the most stable, least soluble of all calcium orthophosphates, and is one of the most promising calcium phosphate biomaterials which can be obtained from chemical reagent, natural sources, animal-like dental enamel, corals, etc. Thermally stable HAp powders have been prepared using wet chemical route and co-precipitation method from various precursors such as naturally abundant seashell waste, calcium hydroxide Ca(OH)6 and mono ammonium phosphate NH4H2PO4 as calcium and phosphate sources, respectively. The crystal structure, morphology, elemental analysis, molecular bonding, and electric properties of the synthesized HAp powders have been studied using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), Raman spectroscopy, Fourier transform infrared spectroscopy (FT-IR), and complex impedance spectroscopy. The effect of simulated body fluids immersion on the molecular bending and electric properties is also reported.
Keywords: hydroxyapatite, structure, microstructure, morphology, electric properties
Abbasi, N., Hamlet, S., Love, R. M., and Nguyen, N. T. (2020). Porous scaffolds for bone
regeneration. Journal of Science: Advanced Materials and Devices, 5, 1-9.
https://doi.org/10.1016/j.jsamd.2020.01.007.
Abdel–Baset, T. A. (2021). Structure, Optical, Dielectric, and Magnetic Properties of
Zn0.99M0.01O (M = Ni, Fe, and Cd) nanoparticles. Journal of Superconductivity and
Novel Magnetism, 34, 1259–1267. https://doi.org/10.1007/s10948-021-05843-9.
Badran, H., Yahia, I. S., Hamdy, M., and Awwad, N. S. (2017). Lithium-doped
hydroxyapatite nano-composites: Synthesis, characterization, gamma attenuation
coefficient and dielectric properties. Radiation Physics and Chemistry, 130, 85–91.
https://doi.org/10.1016/j.radphyschem.2016.08.001.
Bisquert, J., Garcia-Belmonte, G., Pitarch, A., and Bolink, H. (2006). Negative capacitance
caused by electron injection through interfacial states in organic light-emitting diodes.
Chemical and Physical Letters, 422, 184−191. http://dx.doi.org/10.1016/j.cplett.2006.02.060.
Bouhaouss, A., Laghzizil, A., Bensaoud, A., Ferhat, M., Lorent, G., and Livage, J. (2001).
Mechanism of ionic conduction in oxy and hydroxyapatite structures. International
Journal of Inorganic Materials, 3, 743-747.
https://doi.org/10.1016/S1466-6049(01)00054-X Specially.
Boutinguiza, M. J., Comesaña, R., Lusquiños, F., de Carlos, A., and León, B. (2012).
Biological hydroxyapatite obtained from fish bones. Material Science and
Engineering C, 32, 478–486. https://doi:10.1016/j.msec.2011.11.021.
Chaair, H., Heughebaert, J., and Heughebaert, M. (1995).
Journal of Materials Chemistry, 5, 895.
Chavan, P. N., Bahir, M. M., Mene, R. U., Mahabole, M. P., and Khairnar, R. S. (2010).
Study of nanobiomaterial hydroxyapatite in simulated body fluid: Formation and
growth of apatite. Materials Science and Engineering B, 168, 224–230.
https://doi.org/10.1016/j.mseb.2009.11.012.
Criseida Ruiz-Aguilar, Luz Eugenia Alcántara-Quintana, Ena Athenea Aguilar-Reyes, and
U Olivares-Pinto. (2022). Fabrication, characterization, and in vitro evaluation of -
TCP/ZrO2-phosphate-based bioactive glass scaffolds for bone repair. Boletin de la
Sociedad Espanola de Ceramica et Vidrio [Bulletin of the Spanish Society of Ceramics
and Glass], 61, 191-202. https://doi.org/10.1016/j.bsecv.2020.09.004.
Deb, P., and Deoghare, A. B. (2019). Effect of acid, alkali and alkali–acid treatment on
physicochemical and bioactive properties of hydroxyapatite derived from Catla catla
fish scales. Arabian Journal for Science and Engineering, 44, 7479–7490.
https://doi.org/10.1007/s13369-019-03807-9.
del Campo, R., Savoini, B., Jordao, L., Muñoz, A., and Monge, M. A. (2017).
Cytocompatibility, biofilm assembly and corrosion behavior of Mg-HAP composites
processed by extrusion. Material Science Engineering C, 78, 667-673.
https://doi.org/10.1016/j.msec.2017.04.143.
Dubey, A. K., Kakimoto, K., Obata, A., and Kasuga, T. (2014). Enhanced polarization of
hydroxyapatite using the design concept of functionally graded materials with sodium
potassium niobate. RSC Advanced, 4, 24601-24611. https://doi:10.1039/c4ra02329c.
Fihri, A., Len, C., Varma, R. S., and Solhy, A. (2017). Hydroxyapatite: A review of
syntheses, structure and applications in heterogeneous catalysis. Coordination
Chemistry Reviews, 347, 48-76. https://doi.org/10.1016/j.ccr.2017.06.009.
Fowler, B. O., Markovic´, M., and Brown, W. E. (1993). Octacalcium phosphate carboxylates.
3. Infrared and Raman vibrational spectra. Chemistry of Materials, 5, 1417–1423.
Gamble, J. E. (1967). Chemical anatomy, physiology and pathology of extracellular fluid.
Cambridge, MA: Harvard University Press, p. 1–17.
Gittings, J. P., Bowen, C. R., Turner, I. G., Dent, A. C. E., Baxter, F. R., and Chaudhuri, J.
B. (2008). Dielectric properties of hydroxyapatite based ceramics. Cardiff University,
Cardiff, UK. Published by Whittles Publishing Ltd.
https://doi.org/10.1016/j.actbio.2008.08.012.
Gittings, J. P., Bowen, C. R., Dent, A. C. E., Turner, I. G., Baxter, F. R., and Chaudhuri, J.
B. (2009). Electrical characterization of hydroxyapatite-based bioceramics. Acta
Biomaterialia, 5, 743-754. https://doi.org/10.1016/j.actbio.2008.08.012.
Haider, A., Haider, S., Han, S. S., and Kang, I. K. (2017). Recent advances in the synthesis,
functionalization and biomedical applications of hydroxyapatite: review. RSC
Advances, 7, 7442-7458. https://doi.org/10.1039/C6RA26124H.
Harkat, M., Alleg, S., Chemam, R., Azzaza, S., Mokhtari, M., and Dhahri, E. (2021).
Synthesis and characterization of thermally stable hydroxyapatite. Annales de Chimie:
Science des Matériaux, 45, 43-50. https://doi:10.18280/acsm.450106.
Harkat, M., Alleg, S., Chemam, R. et al. (2022). Structure and Electric Characterizations
of the Derived Nanocrystalline Hydroxyapatite from Strombidae Strombus Seashells.
Arabian Journal for Science and Engineering, 47, 7693–7706.
https://doi.org/10.1007/s13369-021-06556-w.
Horiuchia, N., Madokorob, K., Nozakia, K., Nakamuraa, M., Katayamab, K., and Nagaia
Yamashita, A. K. (2018). Electrical conductivity of polycrystalline hydroxyapatite and
its application to electret formation. Solid. State Ionics, 315, 19–25.
https://doi.org/10.1016/j.ssi.2017.11.029.
Javadinejad, H. R., Saboktakin Rizi, M., Aghababaei Mobarakeh, E., and Ebrahimian, M.
(2017). Thermal stability of nano-hydroxyapatite synthesized via mechanochemical
treatment. Arabian Journal for Science and Engineering, 42, 4401–4408.
https://doi.org/10.1007/s13369-017-2498-y.
Jonscher, A. (1977). The universal dielectric response. Nature, 267, 673–679.
https://doi.org/10.1038/267673a0.
Kalil, M. Sh., Beheri, H. H., and Fattah, W. (2002). Structural and electrical properties of
zirconia/hydroxyapatite porous composites. Ceramics International, 28, 451–458.
https://doi:10.1016/S0272-8842(01)00118-3.
Kay, M. I., Young, R. A., and Posner, A. S. (1964). Crystal structure of hydroxyapatite.
Nature, 204, 1050–1052. http://dx.doi.org/10.1038/2041050a0.
Kramer, E., and Podurgiel, J. (2014). Control of hydroxyapatite nanoparticle morphology
using wet synthesis techniques: Reactant addition rate effects. Materials Letters, 131,
145-147. https://doi.org/10.1016/j.matlet.2014.05.105.
Kokubo, T., Kushitani, H., Sakka, S., Kitsugi, T., and Yamamuro, T. (1990). Solutions able
to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W3.
Journal of Biomedical Materials Research, 24(6), 721-734.
Kokubo, T., and Takadama, H. (2006). How useful is SBF in predicting in vivo bone
bioactivity. Biomaterials, 27, 2907-2915.
Kumar, M. A., Chipara, A. C., Narayanan, N. T., Anumary, A., Sruthi, R., Thanikaivelan,
P., Vajtai, R., Mani, S. A., and Ajayan, P. M. (2016). Three-dimensional porous
sponges from collagen Biowastes. ACS Applied Materilas Interfaces, 8, 14836–14844.
https://doi.org/10.1021/acsami.6b04582.
Kumar, G. S., Girija, E. K., Venkatesh, M., Karunakara, G., Kolesnikov, E., and Kuznetsov,
D. (2017). One step method to synthesize flower-like hydroxyapatite architecture
using mussel shell bio-waste as a calcium source. Ceramics International,
43, 3457–3461. https://doi:10.1016/j.ceramint.2016.11.163.
Kumar, G. S., Karunakaran, G., Girija, E. K., Kolesnikov, E., Van Minh, N., Gorshenkov,
M. V., and Kuznetsov, D. (2018). Size and morphology-controlled synthesis of
mesoporous hydroxyapatite nanocrystals by microwave-assisted hydrothermal
method. Ceramics International, 44, 11257-11264.
https://doi.org/10.1016/j.ceramint.2018.03.170.
Laghzizil, A., El herch, N., Bouhaoussa, A., Lorenteb, G., Coradinb, T., and Livageb, J.
(2001). Electrical behavior of hydroxyapatites M10(PO4)6(OH)2 (M = Ca, Pb, Ba).
Materials Research Bulletin, 36, 953–962.
http://dx.doi.org/10.1016/S0025-5408(01)00576-1.
Louati, B., Guidara, K., and Gargouri, M. (2009). Dielectric and ac ionic conductivity
investigations in the monetite. Journal of Alloys and Compounds, 472, 347.
http://dx.doi.org/10.1016/j.jallcom.2008.04.050.
Li, M., Feteira, A., and Sinclair, D. C. (2005). Origin of the high permittivity in
(La0.4Ba0.4Ca0.2) (Mn0.4Ti0.6)O3 ceramics. Journal of Applied Physics, 98(8), 084101.
http://dx.doi.org/10.1063/1.2089159.
Limmahakhun, S., Oloyede, A., Sitthiseripratip, K., Xiao, Y., and Yan, C. (2017).
3D printed cellular structures for bone biomimetic implants.
Additive Manufacturing, 15, 93−101.
Lin, T. H., Wang, H. C., Cheng, W. H., Hsu, H. C., and Yeh, M. L. (2019). Osteochondral
tissue regeneration using a tyramine-modified bilayered PLGA scaffold combined
with articular chondrocytes in a porcine model. International Journal of Molecular
Science, 20(2). https://doi.org/10.3390/ijms20020326.
Lutterotti, L., Scardi, P., and Maistrelli, P. (1992). LSI- computer program for simultaneous
refinement of material structure and microstructure. Journal of Applied
Crystallography, 25, 459-462. http://maud.radiographema.eu/.
Manna, A., Pramanik, S., Tripathy, A., Moradia, A., Radzi, Z., Pingguan-murphy, B.,
Hasnan, N., and Abu Osman, N. A. (2016). Development of biocompatible
hydroxyapatite-Poly(ethylene glycol) core-shell nanoparticles as improved drug
carrier: structural and electrical characterizations. RSC Advanced, 6, 102853-102868.
https://doi.org/10.1039/C6RA21210G.
Nagai, M., and Nishino, T. (1988). Surface conduction of porous hydroxyapatite ceramics
at elevated temperature. Solid State Ionics, 28-30, 1456-1461.
Nosenko, V. V. A., Yaremko, M., Dzhagan, V. M., Vorona, I. P., Romanyuk, Y. A., and
Zatovsky, I. V. (2016). Nature of some features in Raman spectra of hydroxyapatite containing materials.
Journal of Raman Spectroscopy, 47, 726–730.
Orlovskii, V. P., Zakharov, N. A., and Ivanov, A. A. (1996). Structural transition and
dielectric characteristics of high purity Hydroxyapatite.
Inorganic Materials, 32 (6), 654-656.
Piccirillo, C., Pullar, R. C., Costa, E., Santos-Silva, A., Pintadoa, M. M., and Castro, P. M.
L. (2015). Hydroxyapatite-based materials of marine origin: A bioactivity and
sintering study. Materials Science and Engineering, 51, 309–315. https://doi.org/
10.1016/j.msec.2015.03.020.
Prieto Valdes, J. J., Victorero Rodriguez, A., and Guevara Carrio, J. (1995). Dielectric
properties and structure of hydroxyapatite ceramics sintered by different conditions.
Journal of Materials Research, 10, 2174-2177.
https://doi.org/10.1557/JMR.1995.2174.
Prezas, P. R., Melo, B. M. G., Costa, L. C., Valente, M. A., Lança, M. C., Ventura, J. M.,
and Graça, M. P. F. (2017). TSDC and impedance spectroscopy measurements on
hydroxyapatite, β-tricalcium phosphate and hydroxyapatite/β-tricalcium phosphate
biphasic bioceramics. Applied Surface Science, 424, 28–38.
https://doi:10.1016/j.apsusc.2017.02.225.
Radin, S. R., and Ducheyne, P. (1993). The effect of calcium phosphate ceramic
composition and structure on in vitro behavior. II. Precipitation. Journal of Biomedical
Material Research, 27, 35-45. https://doi.org/10.1002/jbm.820270106.
Ramesha, S., Natashaa, A. N., Tana, C. Y., Banga, L. T., Niakana, A., Purbolaksonoa, J.,
Chandranc, H., Chinga, C. Y., Rameshd, S., and Tenge, W. D. (2015). Characteristics
and properties of hydroxyapatite derived by sol–gel and wet chemical precipitation
methods. Ceramics International, 41(9), 10434-10441.
https://doi.org/10.1016/j.ceramint.2015.04.105.
Raya, I., Mayasari, E., Yahya, A., Syahrul, M., and Latunra, A. I. (2015). Synthesis and
characterizations of calcium hydroxyapatite derived from crabs shells (Portunus
pelagicus) and its potency in safeguard against to dental demineralizations.
International Journal of Biomaterials, 2015, 1–8.
http://dx.doi.org/10.1155/2015/469176.
Rehwald, W., Kiess, H., and Binggeli, B. (1987). Frequency dependent conductivity in
polymers and other disordered materials. Z. Physik B – Condensed Matter, 68, 143–
148. https://doi.org/10.1007/BF01304219.
Rietveld, H. M. (1969). A profile refinement method for nuclear and magnetic structures.
Journal of Applied Crystallography, 2, 65-71.
https://doi.org/10.1107/S0021889869006558.
Royce, B. S. H. (1974). Field-induced transport mechanisms in hydroxyapatite. Annals of
the New York Academy of Science, 238, 131-138.
https://doi.org/10.1111/j.1749-6632.1974.tb26783.x.
Rujitanapanich, S., Kumpapan, P., and Wanjanoi, P. (2014). Synthesis of hydroxyapatite
from oyster shell via precipitation. Energy Procedia, 56, 112–117. https://doi.org/
10.1016/j.egypro.2014.07.138.
Saha, S., Nandy, A., Pradhan, S. K., and Meikap, A. K. (2017). Electrical transport and
dielectric modulus formalism of CuO doped ZrO 2 partially stabilized solid solution.
Materials Research Bulletin, 88, 272–280.
http://dx.doi.org/10.1016/j.materresbull.2017.01.003.
Sajid Iqbal, Muhammad Younas, Muhmoodul Hassan, Ho Jin Ryu, Mohsin Ali Raza
Anjuma, M. (2021). Arshad Farhan, Muhammad Nadeem, Jong-Il Yun. Electronic,
electrical, and dielectric analysis of Cr-doped hydroxyapatite. Chemical Physics
Letter, 771, 138507. https://doi.org/10.1016/j.cplett.2021.138507.
Sánchez-Bajo, F., and Cumbrera, F. L. (1997). The Use of the Pseudo-Voigt Function in
the Variance Method of X-ray Line-Broadening Analysis”. Journal of Applied
Crystallography, 30(4), 427–430. https://doi:10.1107/S0021889896015464.
Santhosh, S., and Prabu, S. B. (2012). Synthesis and characterization of nanocrystalline
hydroxyapatite from sea shells. International Journal of Biomedical Nanoscience and
Nanotechnology, 2, 276-283. https://doi:10.1504/ijbnn.2012.051221.
Sauer, G. R., Zunic, W. B., Durig, J. R., and Wuthier, R. E. (1994). Fourier transform
Raman spectroscopy of synthetic and biological calcium phosphates. Calcif Tissue
International, 54, 414–420. https://doi.org/10.1007/BF00305529.
Stanciu, P. L., Sandulescu, G. A., Savu, B., Stanciu, S. G., Paraskevopoulos, K. M.,
Chatzistavrou, X., and Kontonasaki, E. (2007). Investigation of the Hydroxiapatite
growth on bioactive glass surface. Journal of Biomedical Pharmaceutical
Engineering, 1, 34–39.
Sunila, B. R. and Jagannatham, M. (2016). Producing hydroxyapatite from fish bones by
heat treatment. Materials Letter, 185, 411–414.
https://doi:10.1016/j.matlet.2016.09.039.
Suparto, I. H., and Putri, D. K. (2015). Synthesis of Hydroxyapatite from Rice Fields Snail
Shell (bellamyajavanica) through wet method and pore modification using chitosan.
Procedia Chemistry, 17, 27-35. https://doi.org/10.1016/j.proche.2015.12.120.
Tămăşan, M., Ozyegin, L. S., Oktar, F. N., and Simon, V. (2013). Characterization of
calcium phosphate powders originating from Phyllacanthus imperialis and Trochidae
Infundibulum concavus marine shells. Material Science and Engineering C, 33, 2569–
2577. https://doi.org/10.1016/j.msec.2013.02.019.
Tanaka, Y., Takata, S., Shimoe, K., Nakamura, M., Nagai, A., Toyama, T., and Yamashita,
K. (2008). Conduction properties of non-stoichiometric hydroxyapatite whiskers for
biomedical use. Journal of the Ceramic Society of Japan, 116, 815-821.
https://10.2109/jcersj2.116.815.
Tavangar, M., Heidari, F., Hayati, R., Tabatabaei, F., Vashaee, D., and Tayebi, L. (2019).
Manufacturing and characterization of mechanical, biological and dielectric properties
of hydroxyapatite-barium titanate nanocomposite scaffolds. Ceramics International,
46, 9086-9095. https://doi:10.1016/j. ceramint.2019.12.157.
Tofail, S. A. M., Haverty, D., Stanton, K. T., and McMonagle, J. B. (2005). Structural order
and dielectric behaviour of hydroxyapatite. Ferroelectrics, 319(1), 117– 123.
http://dx.doi.org/10.1080/00150190590965523.
Türk, S., Altınsoy, İ., Efe, G. Ç., Ipek, M., Özacar, M., and Bindal, C. (2019). Effect of
solution and calcination time on sol-gel synthesis of hydroxyapatite. Journal of Bionic
Engineering, 16, 311–318. https://doi.org/10.1007/s42235-019-0026-3.
We publish over 800 titles annually by leading researchers from around the world. Submit a Book Proposal Now!