Chapter 8. Study of Transition Metal Dichalcogenides Compounds MS2 (M = Ti, Mo, W): An Ab-Initio Approach

$39.50

Vandana B. Parmar and A. M. Vora
Department of Physics, University School of Sciences, Gujarat University, Navrangpura, Ahmedabad, Gujarat, India

Part of the book: Advances in Chemistry Research. Volume 76

Abstract

The Transition Metal Dichalcogenides (TMDC) compounds like MS2 (M = Ti, Mo, W) are studied by using the Density Functional Theory (DFT) with Generalized Gradient Approximation (GGA) through an ultrasoft pseudopotential and Perdew-Burke-Ernzerhof (PBE) exchange and correlation. In the present chapter, all the computations like the structural optimization, electronic properties and optical properties are calculated by Siesta computational code. From the electronic calculation of the said materials, we conclude that the TiS2 compound has a semimetallic nature while the MoS2 and WS2 compounds have semiconducting nature band structure with small indirect band gaps. In MS2 compound, the energy density diagram states that the element ‘M’ strongly contributes to the conduction region while ‘S’ atom contributes in the valence region, respectively. From the computation of the optical properties of said materials, we have also reported the frequency dependent reflectivity, absorption coefficient, static dielectric constant, static refractive index and coefficient of reflectivity. The computed results supports the proper characteristics of the studied materials.

Keywords: Transition Metal Dichalcogenides (TMDC), Density Functional Theory (DFT), Generalized Gradient Approximation (GGA), Siesta code, Perdew-Burke-Ernzerhof (PBE) exchange and correlation, ultrasoft pseudopotential


References


Ahmad S, Mukherjee S. A comparative study of electronic properties of bulk MoS2 and its
monolayer using DFT technique: application of mechanical strain on MoS2
monolayer. Graphene (2014) 03:52-59.
Bloch P, Jepsen A, Andersen O. Improved tetrahedron method for Brillouin-Zone
integrations. Phys. Rev. B. (1994) 49(23):16223-16233.
Brillouin Zone Concept: https://tiiciiitm.com/profanurag.
Chen B. Q-switched fiber laser based on transition metal dichalcogenides MoS2, MoSe2,
WS2, and WSe2. Opt. Express (2015) 23(20):26723-26737.
Chen Y, Tan C, Zhang H, Wang L. Two-dimensional graphene analogues for biomedical
applications. Chem. Soc. Rev. (2015) 44(9):2681–2701.
Cho B. Chemical sensing of 2D graphene/MoS2 heterostructure device. ACS Appl. Mater.
Interfaces (2015) 7(30):6775–16780.
Chou S, Kaehr B, Kim J, Foley B, De M, Hopkins P, Huang J, Brinker C, Dravid V.
Chemically Exfoliated MoS2 as Near-Infrared Photothermal Agents. Angew. Chem.
(2013) 52(15):4254–4258.
Emilio A, Anglada E, Dieguez O, Gale J, Garcia A, Junquera J, Martin R, Ordejon P,
Pruneda J, Sanchez-Portal D, Soler J. The SIESTA method; developments and
applicability. Journal of Physics: Cond. Matt. (2008) 20(6):064208(1-6).
Furchi M. Device physics of van der Waals heterojunction solar cells. npj 2D Mater.
Appl.(2018) 2:1–7.
Gao Y, Wu X, Huang K, Xing L, Zhang Y, Liu L. Two-dimensional transition metal
diseleniums for energy storage application: A review of recent developments.
CrystEngComm (2017) 19(3):404–418.
George A, Yury V, Andrey A, Dmitry T, Dmitry Y, Sergey N, Denis B, Timur S, Alexey
N, Aleksey A, Valentyn V. Broadband optical properties of monolayer and bulk MoS2.
npj 2D Mater Appl. (2020) 4(21):1-6.
Gnuplot: hsttp://www.gnu.org.
Hamza K, Larbi F. Electronic and optical properties of TiS2 determined from modified
Becke-Johnson GGA potential (mBJ-GGA) study. Rev. Roum. Chim. (2018)
63(10):873-880.
Honglin Li, Lijuan Ye, Yuanqiang X, Hong Z, Shuren Z, Wanjun Li. Tunable electric
properties of BSe-MoS2/WS2 heterostructures for promoted light utilization. Phys.
Chem. Chem. Phys. (2021) 23:10081-10096.
Jian W, Zeng M, Zeng H, Wang Z, Qiang W. Electronic and optical properties of vacancy doped WS2 monolayers. AIP Advances (2012) 2(4):042141-042147.
Kalantar-Zadeh K, Ou J, Daeneke T, Strano M, Pumera M, Gras S. Two-Dimensional
Transition Metal Dichalcogenides in Biosystems Adv. Funct. Mater. (2015)
25(32):5086–5099.
Kappera R, Voiry D, Yalcin S, Branch B, Gupta G, Mohite A, Chhowalla M. Phase engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater (2014)
13:1128–1134.
Khalas V, Parmar V, Vora A. A Density Functional Theory Based Study of Transition Metal
Dichalcogenide – MoS2. Mat. Today: Proc. (2022) – In press,
https://doi.org/10.1016/j.matpr.2022.06.012.
Kohn W, Sham L. Self-consistent equations including Exchange and Correlation effects.
Phys. Rev. 1965 140: A1133-A1138.
Kokaji A, Mol J. XcrySDen—a new program for displaying crystalline structures and
electron densities. Graphics and Modelling (1999) 17(3-4):176-179.
Kravets V. Measurements of electrically tunable refractive index of MoS2 monolayer and
its usage in optical modulators. npj 2D Mater. Appl. (2019) 3:1–10.
Li H, Jia X, Zhang Q, Wang X. Metallic transition-metal dichalcogenide nanocatalysts for
energy conversion. Chem (2018) 4(7):1510–1537.
Liu X, Zhang Y. Thermal properties of transition-metal dichalcogenide. Chin. Phys. B
(2018) 27(3):034402.
Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A. Ultrasensitive photodetectors
based on monolayer MoS2. Nat. Nanotechnol. (2013) 8(7):497–501.
Lu J, Zheliuk O, Leermakers I, Yuan N, Zeitler U, Law K, Ye J. Evidence for two dimensional Ising superconductivity in gated MoS2. Science (2015) 350(6266):1353-1357.
Mak K, McGill K, Park J, McEuen P. The valley hall effect in MoS2 transistors. Science
(2014) 344(6191):1489-1492.
Mak K, Shan J. Photonics and optoelectronics of 2D semiconductor transition metal
dichalcogenides. Nat. Photonics (2016) 10(4):216–226.
Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O, Kis A. 2D transition metal
dichalcogenides. Nat. Rev. Mater. (2017) 2:17033.
Mueller T, Malic E. Exciton physics and device application of two-dimensional transition
metal dichalcogenide semiconductors. npj 2D Mater. Appl. (2018) 2(29): 1–12.
Newaz A. Electrical control of optical properties of monolayer MoS2. Solid State Commun.
(2013) 155:49–52.
Parmar V, Vora A. Study of Structural and Electronic Properties of TiS2 Compounds using
Density Functional Theory. KCG E-Journal of Science (2021) 30:01-07.
Parmar V, Vora A. Study of structural and electronic properties of TMDC compounds-A
DFT approach. Jordan J. Phys. (2023)-In press.
Parmar V, Vora A. Theoretical study of Transition Metal Dichalcogenides compound TiS2
and their intercalated compound CrTiS2 using density functional theory. Armenian
Journal of Phys. (2021) 14(1):37-48.
Perdew J, Burke K, Ernzerhof M. Generalized Gradient Approximation made simple,
Physical Review Letters (1996) 77(18): 3865-3868.
Perdew J, Wang Y. Accurate and simple analytic representation of the electron-gas
correlation energy. Phys. Rev. B (1992) 45:13244-13249.
Pumera M, Loo A. Layered transition-metal dichalcogenides (MoS2 and WS2) for sensing
and biosensing. TrAC Trends Anal. Chem. (2014) 61:49–53.
Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A. Single-layer MoS2
transistors. Nat. Nanotechnol (2011) 6(1):147–150.
Rasidul I, Masud R, Jannatul I. Electronic and vibrational properties of single layer
transition metal dichalcogenides (TMDC). ICEEE (2017) 1-5.
Ross J. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n
junctions. Nat. Nanotechnol. (2014) 9(4):268–272.
Sachs, M. Solid State Theory. McGraw-Hill (1963) 238-242.
Sangwan V, Hersam M. Electronic transport in two-dimensional materials. Annu. Rev.
Phys. Chem. (2018) 69:299–325.
Setyavan W, Curtarolo S. High-throughput electronic band structure calculations:
Challenges and tools. Comput. Mater. Sci. (2010) 49:299-312.
Sharma, Y, S. Shukla, S. Dwivedi and R. Sharma. Transport properties and electronic
structure of intercalated compounds MTiS2 (M = Cr, Mn, Fe). Adv. Mater. Lett. (2015)
6(4):294–300.
Siordia, AF. Electrochemical performance of Titanium Disulfide and Molybdenum
Disulfide Nanoplates. Master of Science Thesis. University of California, Los Angeles
(2016).
Vanderbilt D. Soft self-consistent pseudopotential in a generalized eigenvalueformalism.
Phys. Rev. B. (1990) 41(11):7892-7895.
Wang G. Colloquium: excitons in atomically thin transition metal dichalcogenides. Rev.
Mod. Phys. (2018) 90(2):021001-25.
Wang K. Ultrafast saturable absorption of two-dimensional MoS2 nanosheets. ACS Nano
(2013) 7(10):9260–9267.
Wang Q, Kalantar-Zadeh K, Kis A. Coleman J, Strano M. Electronics and optoelectronics
of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. (2012)
7:699–712.
Wang T, Zhu R, Zhuo J, Zhu Z, Shao Y, Li M. Direct Detection of DNA below ppb Level
Based on Thionin-Functionalized Layered MoS2 Electrochemical Sensors Anal.
Chem. (2014) 86(24):12064–12069.
Yin Z, Li H, Li H, Jiang L, Shi Y, Sun Y, Lu G, Zhang Q, Chen X, Zhang H. Single-layer
MoS2 phototransistors. ACS Nano (2012) 6(1):74–80.
Yu S. Dye-sensitized MoS2 photodetector with enhanced spectral photoresponse. ACS
Nano (2014) 8(8):8285–8291.
Zeng S. Graphene–MoS2 hybrid nanostructures enhanced surface plasmon resonance
biosensors. Sens. Actuators B Chem. (2015) 207:801–810.
Zhang Y, Oka T, Suzuki R, Ye J, Iwasa Y. Electrically switchable chiral light-emitting
transistor. Science (2014) 344(6185):725–728.

Category:

Publish with Nova Science Publishers

We publish over 800 titles annually by leading researchers from around the world. Submit a Book Proposal Now!