Chapter 8. Aquatic Plants as Ecological Indicators – Status and Indices of Unhealthy Sandy Soil Water Bodies

$39.50

Qurratu Aini Mat Ali¹, Farah Ayuni Mohd Hatta², Razanah Ramya³, Wan Syibrah Hanisah Wan Sulaiman⁴, Nur Hanie Mohd Latiff⁵ and Rashidi Othman⁶
¹,²Intitute of Islam Hadhari, The National University of Malaysia, Bangi, Selangor, Malaysia
³Institute of Malay and Civilization, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
⁴,⁵International Institute for Halal Research and Training, International Islamic University Malaysia (IIUM), Kuala Lumpur, Malaysia
⁶Herbarium Unit, Department of Landscape Architecture, Kulliyyah of Architecture and Environmental Design, IIUM, Kuala Lumpur, Malaysia

Part of the book: Advantages and Disadvantages of Sandy Soils

Abstract

Inorganic contaminants and eutrophication are typically associated with the profusion of invasive aquatic vegetation in freshwater. Such extensive problems concerning water bodies are triggered due to excess levels of phosphate (P), nitrogen (N), and heavy metals. Superfluous nutrient levels and toxic elements can create adverse environmental conditions, eutrophication, algal blooms, invasive growth of several aquatic plants, oxygen level depletion, and loss of important species, reducing the quality of several freshwater systems. Numerous physicochemical and biological indicators are used to gauge water quality. Such parameters must be understood and managed carefully to determine the origin and degree of pollution load. Hence, this research was conducted to understand the correlation between contamination levels and physicochemical indicators for water bodies with sandy soils and extensive aquatic plants. This research presents an important outcome concerning the loss or profusion of critical species that indicate heavy metal contamination or eutrophication, including concentrations leading to deteriorating sandy soil water body regulation and management. The following are desirable aspects concerning the conditions that must be used as indicators: preventative, measurable, integrative, and sensitive to human-caused stress or interference; however, they must have a predictable stress response and low flexibility reaction.

Keywords: sandy soil, ecological indicator, phytoindicator, macrophyte


References


Abbas, Z., Arooj, F., Ali, S., Zaheer, I. E., Rizwan, M., & Riaz, M. A. (2019).
Phytoremediation of landfill leachate waste contaminants through floating bed
technique using water hyacinth and water lettuce. International Journal of
Phytoremediation, 21(13), 1356-1367.
Akram, R., Turan, V., Hammad, H. M., Ahmad, S., Hussain, S., Hasnain, A., … & Nasim,
W. (2018). Fate of organic and inorganic pollutants in paddy soils. In: Environmental
pollution of paddy soils (pp. 197-214). Springer, Cham.
Ali, S., Abbas, Z., Rizwan, M., Zaheer, I.E., Yavaş, İ., Ünay, A., Abdel-Daim, M.M., Bin Jumah, M., Hasanuzzaman, M., & Kalderis, D. (2020). Application of floating aquatic
plants in phytoremediation of heavy metals polluted water: a review. Sustainability,
12(5), 1927.
Alloway, B. J. (1995). Heavy metals in soils. Blackie Academic and Professional. An
Imprint of Chapman & Hall. Glasgow.
Al-Nozaily, F., Alaerts, G. J. F. R., & Veenstra, S. (2000). Performance of duckweed covered sewage lagoons—II. Nitrogen and phosphorus balance and plant productivity.
Water Research, 34(10), 2734-2741.
Ansari, A. A., & Khan, F. A. (2008). Remediation of eutrophic water using Lemna minor
in a controlled environment. African Journal of Aquatic Science, 33(3), 275-278.
Ansari, A. A., & Khan, F. A. (2009). Remediation of eutrophied water using Spirodela
polyrrhiza L. Shleid in controlled environment. Pan-American Journal of Aquatic
Sciences, 4(1), 52-54.
Ansari, A. A., Gill, S. S., & Khan, F. A. (2010). Eutrophication: threat to aquatic
ecosystems. In Eutrophication: causes, consequences and control (pp. 143-170).
Springer, Dordrecht.
Ansari, A. A., Saggu, S., Mohammad Al-Ghanim, S., Abbas, Z. K., Gill, S. S., Khan, F. A.,
Dar, M. I., Naikoo, M. I., and Khan, A. A. (2017). Aquatic plant biodiversity: a
biological indicator for the monitoring and assessment of water quality. In: A. A.
Ansari, S. S. Gill, Z. K. Abbas and M. Naeem (Eds.), Plant Biodiversity: Monitoring,
Assessment and Conservation, CAB International 2017, p.218-227.
Aslam, M. M., Malik, M., Baig, M. A., Qazi, I. A., & Iqbal, J. (2007). Treatment
performances of compost-based and gravel-based vertical flow wetlands operated
identically for refinery wastewater treatment in Pakistan. Ecological Engineering,
30(1), 34-42.
Babourina, O., & Rengel, Z. (2010). Nitrogen removal from eutrophicated water by aquatic
plants. In: Eutrophication: causes, consequences and control (pp. 355-372). Springer,
Dordrecht.
Baldantoni, D., Alfani, A., Di Tommasi, P., Bartoli, G., & De Santo, A. V. (2004).
Assessment of macro and microelement accumulation capability of two aquatic plants.
Environmental Pollution, 130(2), 149-156.
Bennicelli, R., Stępniewska, Z., Banach, A., Szajnocha, K., & Ostrowski, J. (2004). The
ability of Azolla caroliniana to remove heavy metals (Hg (II), Cr (III), Cr (VI)) from
municipal waste water. Chemosphere, 55(1), 141-146.
Besseling, E. (2018). Micro-and nano plastic in the aquatic environment: from rivers to
whales. Wageningen University and Research.
Bidwell S. D., Woodrow, I. E., Batianoff, G. N., & Sommer- Knudsen, J. (2002).
Hyperaccumulation of manganese in the rainforest tree Austromyrtus bidwillii
(Myrtaceae) from Queensland, Australia. Functional Plant Biology, 29, 899–905.
Blaylock, M. J., & Huang, J. W. (2000). Phytoextraction of metals. In: Raskin, I., and
Ensley, B. D. (eds.). Phytoremediation of toxic metals using plants to clean up the
environment. New York: John Wiley and Sons, 53–70.
Boonyapookana, B., Parkplan, P., Techapinyawat, S., DeLaune, R. D., & Jugsujinda, A.
(2005). Phytoaccumulation of lead by sunflower (Helianthus annuus), tobacco
(Nicotiana tabacum), and vetiver (Vetiveria zizanioides). Journal of Environmental
Science and Health A, 40, 117–137.
Boonyapookana, B., Upatham, E. S., Kruatrachue, M., Pokethitiyook, P., & Singhakaew,
S. (2002). Phytoaccumulation and phytotoxicity of cadmium and chromium in
duckweed Wolffia globosa. International Journal of Phytoremediation, 4(2), 87-100.
Bragato, C., Brix, H., & Malagoli, M. (2006). Accumulation of nutrients and heavy metals
in Phragmites australis (Cav.) Trin. ex Steudel and Bolboschoenus maritimus (L.)
Palla in a constructed wetland of the Venice lagoon watershed. Environmental
Pollution, 144, 967–975.
Brix, H. (2003). Plants used in constructed wetlands and their functions. In: 1st
International Seminar on the use of Aquatic Macrophytes for Wastewater Treatment
in Constructed Wetlands, edit. Dias V., Vymazal J. Lisboa, Portugal (pp. 81-109).
Brix, H., Dyhr‐Jensen, K., & Lorenzen, B. (2002). Root‐zone acidity and nitrogen source
affects Typha latifolia L. growth and uptake kinetics of ammonium and nitrate.
Journal of Experimental Botany, 53(379), 2441-2450.
Broadhurst, C. L., Chaney, R. L., Angle, J. S., Maugel, T. K., Erbe, E. F., & Murphy, C. A.
(2004). Simultaneous hyperaccumulation of nickel, manganese, and calcium in
Alyssum leaf trichomes. Environmental Science & Technology, 38, 5797–5802.
Bronmark, C. & Hansson, L. A. (2007). The Biology of Lakes and Ponds. New York:
Oxford University Press Inc.
Caille, N., Swanwick, S., Zhao, F. J., & McGrath, S. P. (2004). Arsenic hyperaccumulation
by Pteris vittata from arsenic contaminated soils and the effect of liming and
phosphate fertilisation. Environmental Pollution, 132, 113–120.
Cardwell, A. J., Hawker, D. W., & Greenway, M. (2002). Metal accumulation in aquatic
macrophytes from southeast Queensland, Australia. Chemosphere, 48(7), 653-663.
Chandra Sekhar, K., Kamala, C. T., Chary, N. S., Balaram, V., & Garcia, G. (2005).
Potential of Hemidesmus indicus for phytoextraction of lead from industrially
contaminated soils. Chemosphere, 58, 507–514.
Chen, S., Ling, J., & Blancheton, J. P. (2006). Nitrification kinetics of biofilm as affected
by water quality factors. Aquacultural Engineering, 34(3), 179-197.
Cheng, Z., & Zhang, X. (2020, November). Exploring the Habitat Restoration and
Landscape Construction of the Wetland Lakeside Zone in the Lujiang Section on the
Southern Bank of the Chaohu Lake. In IOP Conference Series: Earth and
Environmental Science, 598(1), 012037. IOP Publishing.
Chislock, M. F., Doster, E., Zitomer, R. A., & Wilson, A. E. (2013) Eutrophication: Causes,
Consequences, and Controls in Aquatic Ecosystems. Nature Education Knowledge,
4(4):10
Chrismadha, T. (2020). Phytotechnology for eutrophic waters: ecological approach to
increase benefits. A review. In: IOP Conference Series: Earth and Environmental
Science, 535(1), 012011. IOP Publishing.
de Souza, M. P., Huang, C. P. A., Chee, N., & Terry, N., (1999). Rhizosphere bacteria
enhance the accumulation of selenium and mercury in wetland plants. Planta, 209(2),
259–263.
Dokulil, M. T., & Teubner, K. (2010). Eutrophication and climate change: present situation
and future scenarios. In: Eutrophication: causes, consequences and control (pp. 1-16).
Springer, Dordrecht.
Dorgham, M. M. (2014). Effects of eutrophication. In: Eutrophication: Causes,
consequences and control (pp. 29-44). Springer, Dordrecht.
El Sherbeny, G. A., El-Shehaby, O. A., & Mohsin, I. I. (2015). Ecological study and
morphological variation of Pistia stratiotes in the North Eastern section of the Nile
Delta, Egypt. Journal of Environmental Sciences, 44(1), 31-45.
El-Ramady, H., Brevik, E., Amer, M. M., Elsakhawy, T., Omara Ahmed, A. E. D. A.,
Elbasiouny, H., … & Shalaby, T. A. (2020). Soil and air pollution in the era of COVID 19: a global issue. Egyptian Journal of Soil Science, 60(4), 437-448.
Environmental Quality (sewage) Regulations 2009. (2010). Environmental requirements:
A guide for investors. Department of Environment. 11th edition.
Feuchtmayr, H., Moran, R., Hatton, K., Connor, L., Heyes, T., Moss, B., … & Atkinson, D.
(2009). Global warming and eutrophication: effects on water chemistry and
autotrophic communities in experimental hypertrophic shallow lake mesocosms.
Journal of Applied Ecology, 46(3), 713-723.
Fritioff, A., & Greger, M. (2006). Uptake and distribution of Zn, Cu, Cd, and Pb in an
aquatic plant Potamogeton natans. Chemosphere, 63, 220–227.
Fritioff, Å., Kautsky, L., & Greger, M. (2005). Influence of temperature and salinity on
heavy metal uptake by submersed plants. Environmental Pollution, 133(2), 265-274.
Ganji M. T., Khosravi, M., & Rakhshaee, R. (2005). Biosorption of Pb, Cd, Cu and Zn from
the wastewater by treated Azolla filiculoides with H2O2/MgCl2. International Journal
of Environmental Science & Technology, 1(4), 265- 271.
Garnier, A. (2018). Importance of Interactions and Feedbacks for Experimental Microbial
Aquatic Communities (Doctoral dissertation, University of Zurich).
Gisbert, C., Ros, R., de Haro, A., Walker, D.J., Pilar Bernal, M., Serrano, R., & Avino, J.N.
(2003). A plant genetically modified that accumulates Pb is especially promising for
phytoremediation. Biochem. Biophys. Res. Commun., 303(2), 440-445.
Goldhaber, S. B. (2003). Trace element risk assessment: Essentiality vs. toxicity.
Regulatory Toxicology and Pharmacology, 38, 232–242.
Gonçalves, E. P., Boaventura, R. A., & Mouvet, C. (1992). Sediments and aquatic mosses
as pollution indicators for heavy metals in the Ave river basin (Portugal). Science of
the Total Environment, 114, 7-24.
Greger, M. (1999). Metal availability and bioconcentration in plants. In: Prasad, M. N. V.,
and Hagemeyer, J. (eds.). Heavy metal stress in plants: From molecule to ecosystems.
Berlin, Heidelberg, Germany: Springer-Verlag.
Hadad, H. R., Maine, M. & Bonetto, C. A. (2006). Macrophyte growth in a pilot-scale
constructed wetland for industrial wastewater treatment. Chemosphere, 63, 1744–1753.
Herb, W. R., & Stefan, H. G. (2006). Seasonal growth of submersed macrophytes in lakes:
The effects of biomass density and light competition. Ecological Modelling, 193(3-4),
560-574.
Huang, J., Reneau Jr, R. B., & Hagedorn, C. (2000). Nitrogen removal in constructed
wetlands employed to treat domestic wastewater. Water Research, 34(9), 2582-2588.
Iamchaturapatr, J., Yi, S. W., & Rhee, J. S. (2007). Nutrient removals by 21 aquatic plants
for vertical free surface-flow (VFS) constructed wetland. Ecological Engineering,
29(3), 287-293.
Interim National Water Quality Standards for Malaysia (INWQS) (2006). National
Water Quality Standards for Malaysia. Retrieved from: http://www.wepa db.net/policies/law/malaysia/eq_surface.htm [24 July 2022].
International Conference on Environment (ICENV) (2008). Environmental Management
and Technologies Towards Sustainable Environment. 15-17 December 2008, G Hotel,
Penang.
Isaksson, R., Balogh, S. J. & Farris, M. A. (2007). Accumulation of mercury by the aquatic
plant Lemna minor. International Journal of Environmental Studies, 64(2), 189–194.
Jackson, L. J. (1998). Paradigms of metal accumulation in rooted aquatic vascular plants.
Science of the Total Environment, 219(2-3), 223-231.
Jain, S. K., Vasudevan, P., & Jha, N. K. (1989). Removal of some heavy metals from
polluted waters by aquatic plants: Studies on duckweed and water velvet. Biological
Wastes, 28, 115–126.
Jonge, V. N. D., Elliott, M., & Orive, E. (2002). Causes, historical development, effects
and future challenges of a common environmental problem: eutrophication. In:
Nutrients and eutrophication in estuaries and coastal waters (pp. 1-19). Springer,
Dordrecht.
Kim, S. S., & Kim, H. J. (2003). Impact and threshold concentration of toxic materials in
the stripped gas liquor on nitrification. Korean Journal of Chemical Engineering,
20(6), 1103-1110.
Knox, A. S., Gamerdinger, A. P., Adriano, D. C., Kolka, R. K., & Kaplan, D. I., (1999).
Sources and Practices Contributing to Soil Contamination. In: Adriano, D. C., Bollag,
J. M., Frankenberg, W. T. Jr., Sims, R. C. (Eds.), Bioremediation of the Contaminated
Soils. Agronomy Series No. 37, ASA, CSSA, SSSA, Madison, Wisconson, USA,
p.53-87.
Körner, S., Das, S. K., Veenstra, S., & Vermaat, J. E. (2001). The effect of pH variation at
the ammonium/ammonia equilibrium in wastewater and its toxicity to Lemna gibba.
Aquatic Botany, 71(1), 71-78.
Kubota, H., & Takenaka, C. (2003). Arabis gemmifera is a hyperaccumulator of Cd and
Zn. International Journal of Phytoremediation, 5, 197–120.
Kumar, N. J., Hiren, S. O. N. I., & Kumar, R. N. (2006). Biomonitoring of selected
freshwater macrophytes to assess lake trace element contamination: a case study of
Nal Sarovar Bird Sanctuary, Gujarat, India. Journal of Limnology, 65(1), 9.
Lee, S. M., & Ryu, C. M. (2021). Algae as new kids in the beneficial plant microbiome.
Frontiers in Plant Science, 12, 599742.
Lesagea, E., Mundiaa, C., Rousseaub, D. P. L., Van de Moortela, A. M. K., Lainga, G. D.,
Meersa, E., Tacka, F. M. G., Pauwc, N. D., & Verloo, M. G. (2007). Sorption of Co,
Cu, Ni and Zn from industrial effluents by the submerged aquatic macrophyte
Myriophyllum spicatum L. Ecological Engineering, 30, 320–325.
Lesiv, M. S., Polishchuk, A. I., & Antonyak, H. L. (2020). Aquatic Macrophytes:
Ecological Features and Functions. Studia Biolo gica, 14(2), 79-94.
Lindqvist, O., 1991. Mercury in the Swedish environment. Water Air Soil Bull., 55(1), 23-32.
Mallick, N., Singh, A.K., & Rai, L.C. (1990). Impact of bimetallic combinations of Cu, Ni
and Fe on growth rate, uptake of nitrate and ammonium, 14CO2 fixations, nitrate
reductase and urease activity of Chlorella vulgaris. Biol. Metals, 2, 223–228.
Manios, T., Stentiford, E. I., & Millner, P. A. (2003). The effect of heavy metals
accumulation on the chlorophyll concentration of Typha latifolia plants, growing in a
substrate containing sewage sludge compost and watered with metalliferous water.
Ecological Engineering, 20(1), 65-74.
Mazej, Z., & Germ, M. (2009). Trace element accumulation and distribution in four aquatic
macrophytes. Chemosphere, 74(5), 642-647.
Mishra, S., Srivastava, S., Tripathi, R. D., Kumar, R., Seth, C. S., & Gupta, D. K. (2006).
Lead detoxification by coontail (Ceratophyllum demersum L.) involves induction of
phytochelatins and antioxidant system in response to its accumulation. Chemosphere,
65(6), 1027-1039.
Mishra, V. K., Upadhyaya, A. R., Pandey, S. K., & Tripathi, B. D. (2008). Heavy metal
pollution induced due to coal mining effluent on surrounding aquatic ecosystem and
its management through naturally occurring aquatic macrophytes. Bioresource
Technology, 99(5), 930-936.
Mkandawire, M., & Dudel, E. G. (2005). Accumulation of arsenic in Lemna gibba L.
(duckweed) in tailing waters of two abandoned uranium mining sites in Saxony,
Germany. Science of the Total Environment, 336, 81–89.
Mojiri, A., Zhou, J. L., Ratnaweera, H., Ohashi, A., Ozaki, N., Kindaichi, T., & Asakura,
H. (2021). Treatment of landfill leachate with different techniques: an overview.
Journal of Water Reuse and Desalination, 11(1), 66-96.
Muir, D. C., & Howard, P. H. (2006). Are there other persistent organic pollutants? A
challenge for environmental chemists. Environmental Science & Technology, 40(23),
7157-7166.
Mukherjee, S., Mukherjee, S., Bhattacharyya, P., & Duttagupta, A. K. (2004). Heavy metal
levels and esterase variations between metal-exposed and unexposed duckweed
Lemna minor: field and laboratory studies. Environment International, 30(6), 811-814.
Mustafa, H. M., & Hayder, G. (2021). Recent studies on applications of aquatic weed plants
in phytoremediation of wastewater: A review article. Ain Shams Engineering Journal,
12(1), 355-365.
NAHRIM (2005). A Desktop Study on The Status of Lake Eutrophication in Malaysia Final report, August 2005.
Nelson, S. G., Smith, B. D., & Best, B. R. (1981). Kinetics of nitrate and ammonium uptake
by the tropical freshwater macrophyte Pistia stratiotes L. Aquaculture, 24, 11-19.
Nieboer, E., & Richardson, D. H. (1980). The replacement of the nondescript term ‘heavy
metals’ by a biologically and chemically significant classification of metal ions.
Environmental Pollution Series B, Chemical and Physical, 1(1), 3-26.
Nriagu, J. O. (1994). Arsenic in the environment. Part I: cycling and characterization. John
Wiley and Sons, New York.
Nriagu, J. O., & Pacyna, J. M. (1988). Quantitative assessment of worldwide contamination
of air, water and soils by trace metals. Nature, 333(6169), 134-139.
Nykytiuk, P. (2020). Phytoindication: basic diagnostic characteristics and approaches.
Danish Scientific Journal, (35), 5-9.
O’Dell, B. L., & Sunde, R. A. (1997). Introduction. In: B. L. O’Dell & R. A. Sunde (Eds.),
Handbook of nutritionally essential mineral elements (pp. 1–12). New York: Marcel
Dekker.
Odjegba, V. J., & Fasidi, I. O. (2004). Accumulation of trace elements by Pistia stratiotes:
implications for phytoremediation. Ecotoxicology, 13(7), 637-646.
Odjegba, V. J., & Fasidi, I. O. (2007). Phytoremediation of heavy metals by Eichhornia
crassipes. Environmentalist, 27, 349–355.
Othman, R., Sulaiman, W. S. H. W., Baharuddin, Z. M., Mahamod, L. H., & Hashim, K.
S. H. Y. (2019). Impact of sandy soil physico-chemical properties towards urban lakes
eutrophication and inorganic pollutant status. Desalination and Water Treatment, 163,
404-408.
Ozengin, N., & Elmaci, A. (2007). Performance of Duckweed (Lemna minor L.) on
different types of wastewater treatment. Journal of Environmental Biology, 28(2),
307-314.
Parker, D. R., Feist, L. J., Varvel, T. W., Thomason, D. N., & Zhang, Y. Q. (2003).
Selenium phytoremediation potential of Stanleya pinnata. Plant Soil, 249, 157–165.
Peng, K., Luo, C., Lou, L., Li, X., & Shen, Z. (2008). Bioaccumulation of heavy metals by
the aquatic plants Potamogeton pectinatus L. and Potamogeton malaianus Miq. and
their potential use for contamination indicators and in wastewater treatment. Science
of the Total Environment, 392(1), 22-29.
Pleto, J. V. R., Arboleda, M. D. M., Simbahan, J. F., & Migo, V. P. (2018). Assessment of
the effect of remediation strategies on the environmental quality of aquaculture ponds
in Marilao and Meycauayan, Bulacan, Philippines. Journal of Health and Pollution,
8(20), 181205.
Prasad, M. N. V. (2004). Heavy metal stress in plants: from biomolecules to ecosystems.
Springer Science & Business Media.
Qian, J. H., Zayed, A., Zhu, Y. L., Yu, M., & Terry, N. (1999). Phytoaccumulation of trace
elements by wetland plants: III. Uptake and accumulation of ten trace elements by
twelve plant species. Journal of Environmental Quality, 28(5), 1448-1455.
Rahman, M. A., Hasegawa, H., Ueda, K., Maki, T., Okumura, C., & Rahman, M. M. (2007).
Arsenic accumulation in duckweed (Spirodela polyrhiza L.): A good option for
phytoremediation. Chemosphere, 69, 493–499.
Rai, P. K. (2008). Heavy metal pollution in aquatic ecosystems and its phytoremediation
using wetland plants: an ecosustainable approach. International Journal of
Phytoremediation, 10(2), 133-160.
Ravera, O. (2001). Monitoring of the aquatic environment by species accumulator of
pollutants: a review. Journal of Limnology, 60(1s), 63-78.
Reed, R. H., & Gadd, G. M. (1990). Metal tolerance in eukaryotic and prokaryotic algae.
In Shaw, A.J. (ed.). Heavy metal tolerance in plants: Evolutionary aspects. Boca
Raton, Fla.: CRC Press, 105–118.
Santos-Díaz, M. D. S., & Barrón-Cruz, M. D. C. (2011). Lead, chromium and manganese
removal by in vitro root cultures of two aquatic macrophytes species: Typha latifolia
L. and Scirpus americanus pers. International Journal of Phytoremediation, 13(6),
538-551.
Sanyahumbi, D., Duncan, J. R., Zhao, M., & Hille, R. V. (1998). Removal of lead from
solution by the non-viable biomass of the water fern Azolla filiculoides. Biotechnology
Letters, 20(8), 745–747.
Schwartz, C., Echevarria, G., & Morel, J. L. (2003). Phytoextraction of cadmium with
Thlaspi caerulescens. Plant Soil, 24, 27–35.
Schwarzenbach, R. P., Gschwend, P. M., & Imboden, D. M. (2003). Environmental
Organic Chemistry, 2nd edition. Amazon, USA.
SCIENCING, (2022). What are the types of soil in freshwater biomes? Retrieved from:
https://sciencing.com/what-are-the-types-of-soil-in-freshwater-biomes 13406907.html [15 July 2022].
Seaward, M. R. D., & Richardson, D. H. S. (1989). Atmospheric Sources of Metal Pollution
and Effects on Vegetation. In: Shaw, A. J. (Ed.), Heavy Metal Tolerance in Plants:
Evolutionary. Aspects, CRC Press, Florida, p.75-92.
Sharma, N. C., Gardea-Torresdey, J. L., Parsons, J., & Sahi, S. V. (2004). Chemical
speciation and cellular deposition of lead in Sesbania drummondii. Environmental
Toxicology and Chemistry, 23, 2068–2073.
Sharma, S. S., & Gaur, J. P. (1995). Potential of Lemna polyrrhiza for removal of heavy
metals. Ecological Engineering, 4, 37–43.
Sigee, D. C. (2005). Freshwater microbiology. John Wiley & Sons. England.
Susarla, S., Medina, V. F., & McCutcheon, S. C. (2002). Phytoremediation: an ecological
solution to organic chemical contamination. Ecological Engineering, 18(5), 647-658.
Thiebaut, G., Guérold, F., & Muller, S. (2002). Are trophic and diversity indices based on
macrophyte communities pertinent tools to monitor water quality?. Water Research,
36(14), 3602-3610.
Tian, J. L., Zhu, H. T., Yang, Y. A., & He, Y. K. (2004). Organic mercury tolerance,
absorption and transformation in Spartina plants. Journal of Plant Physiology and
Molecular Biology, 30(5), 577-582.
Tiwari, J., Kumar, S., Korstad, J., & Bauddh, K. (2019). Ecorestoration of polluted aquatic
ecosystems through rhizofiltration. In: Phytomanagement of Polluted Sites (pp. 179-201). Elsevier.
Tiwari, S., Dixit, S., & Verma, N. (2007). An effective means of biofiltration of heavy
metal contaminated water bodies using aquatic weed Eichhornia crassipes.
Environmental Monitoring and Assessment, 129, 253–256.
Tylova-Munzarova, E., Lorenzen, B., Brix, H., & Votrubova, O. (2005). The effects of
NH4+ and NO3− on growth, resource allocation and nitrogen uptake kinetics of
Phragmites australis and Glyceria maxima. Aquatic Botany, 81(4), 326-342.
Upadhyay, A. R. (2004). Aquatic plants for the wastewater treatment. Daya Publishing
House.
USEPA (United States Environmental Protection Agency) (1988). Design Manual.
Constructed Wetlands and Aquatic Plant Systems for Municipal Wastewater
Treatment. Office of Research and Development, Center of Environmental Research
Information, Cincinnati, OH, pp 83.
Vidyashankar, S., & Ravishankar, G. A. (2016). Algae-based bioremediation: bioproducts
and biofuels for biobusiness. Bioremediation and Bioeconomy, 2016, 457-493.
Walsh, P. R., Duce, R. A., & Fasching, J. L. (1979). Considerations of the enrichment,
sources, and flux of arsenic in the troposphere. Journal of Geophysical Research:
Oceans, 84(C4), 1719-1726.
Wang, Q., Cui, Y., & Dong, Y. (2002). Phytoremediation of polluted waters: Potentials and
prospects of wetland plants. Acta Biotechnology, 22(1–2), 199–208.
Wei, S. H., Zhou, Q. X., Wang, X., Cao, W., Ren, L. P., & Song, Y. F. (2004). Potential of
weed species applied to remediation of soils contaminated with heavy metals. Journal
of Environmental Science- China, 16, 868–873.
Wet, L. P. D. de., Schoonbee, H. J.,Pretorius, J., & Bezuidenhout, L. M. (1990).
Bioaccumulation of selected heavy metals by the water fern, Azolla filiculoides Lam.
in a wetland ecosystem affected by sewage, mine and industrial pollution. Water SA,
16(4), 281-286.
WHO (2004). Guidelines for drinking-water quality (vol. 1, 3rd ed.) Geneva: World Health
Organisation.
Wong, P.T.S., & Chau, Y.K. (1990). Zinc toxicity to freshwater algae. Tox. Assess, 5, 167–177.
Xiaomei, L., Qitang, W., & Banks, M. K. (2005). Effect of simultaneous establishment of
Sedum alfredii and Zea mays on heavy metal accumulation in plants. International
Journal of Phytoremediation, 7(1), 43-53.
Xie, Y., & Yu, D. (2003). The significance of lateral roots in phosphorus (P) acquisition of
water hyacinth (Eichhornia crassipes). Aquatic Botany, 75, 311–321.
Xie, Y., Wen, M., Yu, D., & Li, Y. (2004). Growth and resource allocation of water
hyacinth as affected by gradually increasing nutrient concentrations. Aquatic Botany,
79, 257–266.
Xiong, Y. H., Yang, X. E., Ye, Z. Q., & He, Z. L. (2004). Characteristics of cadmium
uptake and accumulation by two contrasting ecotypes of Sedum alfredii Hance.
Journal of Environmental Science and Health. Part A, Toxic/ Hazardous Substances
& Environmental Engineering, 39, 2925–2940.
Xue, P. Y., Li, G. X., Liu, W. J., & Yan, C. Z. (2010). Copper uptake and translocation in
a submerged aquatic plant Hydrilla verticillata (Lf) Royle. Chemosphere, 81(9), 1098-1103.
Xue, S. G., Chen, Y. X., Reeves, R. D., Baker, A. J., Lin, Q., & Fernando, D. R. (2004).
Manganese uptake and accumulation by the hyperaccumulator plant Phytolacca
acinosa Roxb. (Phytolaccaceae). Environmental Pollution, 131, 393–399.
Yang, X. E., Wu, X., Hao, H. L., & He, Z. L. (2008). Mechanisms and assessment of water
eutrophication. Journal of Zhejiang University Science B, 9(3), 197-209.
Yusof, N., Hassan, M. A., Phang, L. Y., Tabatabaei, M., Othman, M. R., Mori, M., … &
Shirai, Y. (2010). Nitrification of ammonium-rich sanitary landfill leachate. Waste
Management, 30(1), 100-109.
Zhou, L., Liu, J. H., Zhao, B. P., Xue, A., & Hao, G. C. (2016). Effects of soil amendment
on soil characteristics and maize yield in Horqin Sandy Land. In IOP Conference
Series: Earth and Environmental Science (Vol. 41, No. 1, p. 012005). IOP Publishing.
Zhu, Y. L., Zayed, A. M., Quian, J. H., Desouza, M. & Terry, N. (1999). Phytoaccumulation
of trace elements by wetland plants, II: Water hyacinth. Journal of Environmental
Quality, 28, 339–444.
Zimmels, Y., Kirzhner, F., & Malkovskaja, A. (2007). Advanced extraction and lower
bounds for removal of pollutants from wastewater by water plants. Water Environment
Research, 79(3), 287-296.
Zurayk, R., Sukkariyah, B., & Baalbaki, R. (2001). Common hydrophytes as bioindicators
of nickel, chromium and cadmium pollution. Water, Air, and Soil Pollution, 127(1),
373-388.

Category:

Publish with Nova Science Publishers

We publish over 800 titles annually by leading researchers from around the world. Submit a Book Proposal Now!