Table of Contents
Preface
Chapter 1. Correcting and Extending the Applicability of Two Fast Algorithms
1. Introduction
2. Semi-Local Convergence
3. Conclusion
Chapter 2. On the Solution of Generalized Equations in Hilbert Space
1. Introduction
2. Convergence
3. Numerical Examples
4. Conclusion
Chapter 3. Gauss-Newton Algorithm for Convex Composite Optimization
1. Introduction
2. Convergence of GNA
3. Conclusion
Chapter 4. Local Convergence of Newton’s Algorithm of Riemannian Manifolds
1. Introduction
2. Convergence
3. Conclusion
Chapter 5. Newton’s Algorithm on Riemannian Manifolds with Values in a Cone
1. Introduction
2. Semi-Local Convergence
3. Conclusion
Chapter 6. Gauss-Newton Algorithm on Riemannian Manifolds under L-Average Lipschitz Conditions
1. Introduction
2. Semi-Local Convergence
3. Conclusion
Chapter 7. Newton’s Method with Applications to Interior Point Algorithms of Mathematical Programming
1. Introduction
2. An Improved Newton–Kantorovich Theorem
3. Applications to Interior-Point Algorithm
4. Conclusion
Chapter 8. Newton’s Method for Solving Nonlinear Equations Using Generalized Inverses: Part I Outer Inverses
1. Introduction
2. Convergence
3. Conclusion
Chapter 9. Newton’s Method for Solving Nonlinear Equations Using Generalized Inverses: Part II Matrices
1. Introduction
2. Local Convergence
3. Conclusion
Chapter 10. Newton’s Method for Solving Nonlinear Equations Using Generalized Inverses: Part III Ball of Convergence for Nonisolated Solutions
1. Introduction
2. Convergence of Method (10.2)
3. Conclusion
Chapter 11. On an Efficient Steffensen-Like Method to Solve Equations
1. Introduction
2. Analysis
3. Conclusion
Chapter 12. Convergence Analysis for King-Werner-Like Methods
1. Introduction
2. Semi-Local Convergence of Method (12.2)
3. Local Convergence of Method (12.2)
4. Numerical Examples
5. Conclusion
Chapter 13. Multi-Point Family of High Order Methods
1. Introduction
2. Local Convergence
3. Numerical Examples
4. Conclusion
Chapter 14. Ball Convergence Theorems for Some Third-Order Iterative Methods
1. Introduction
2. Local Convergence for Method (14.2)
3. Local Convergence of Method (14.3)
4. Numerical Examples
5. Conclusion
Chapter 15. Convergence Analysis of Frozen Steffensen-Type Methods under Generalized Conditions
1. Introduction
2. Semi-Local Convergence Analysis
3. Conclusion
Chapter 16. Convergence of Two-Step Iterative Methods for Solving Equations with Applications
1. Introduction
2. Semi-Local Convergence Analysis
3. Local Convergence Analysis
4. Numerical Examples
5. Conclusion
Chapter 17. Three Step Jarratt-Type Methods under Generalized Conditions
1. Introduction
2. Local Analysis
3. Numerical Examples
4. Conclusion
Chapter 18. Extended Derivative Free Algorithms of Order Seven
1. Introduction
2. Local Analysis
3. Numerical Examples
4. Conclusion
Chapter 19. Convergence of Fifth OrderMethods for Equations under the Same Conditions
1. Introduction
2. Local Convergence
3. Numerical Examples
4. Conclusion
Chapter 20. A Novel Eighth Convergence Order Scheme with Derivatives and Divided Difference
1. Introduction
2. Convergence
3. Numerical Examples
4. Conclusion
Chapter 21. Homocentric Ball for Newton’s and the Secant Method
1. Introduction
2. Local Convergence
3. Semi-Local Convergence
4. Numerical Examples
5. Conclusion
Chapter 22. A Tenth Convergence Order Method under Generalized Conditions
1. Introduction
2. Convergence
3. Numerical Examples
4. Conclusion
Chapter 23. Convergence of Chebyshev’s Method
1. Introduction
2. Semi-Local Convergence Analysis
3. Local Convergence Analysis
4. Numerical Experiments
5. Conclusion
Chapter 24. Gauss-Newton Algorithms for Optimization Problems
1. Introduction
2. Convergence
3. Conclusion
Chapter 25. Two-Step Methods under General Continuity Conditions
1. Introduction
2. Majorizing Sequences
3. Semi-Local Convergence
4. Numerical Experiments
5. Conclusion
Chapter 26. A Noor-Waseem Third Order Method to Solve Equations
1. Introduction
2. Majorizing Sequences
3. Semi-Local Convergence
4. Numerical Experiments
5. Conclusion
Chapter 27. Generalized Homeier Method
1. Introduction
2. Local Convergence
3. Numerical Experiments
4. Conclusion
Chapter 28. A Xiao-Yin Third Order Method for Solving Equations
1. Introduction
2. Majorizing Sequences
3. Semi-Local Convergence
4. Numerical Experiments
5. Conclusion
Chapter 29. Fifth Order Scheme
1. Introduction
2. Scalar Sequences
3. Semi-Local Convergence
4. Numerical Experiments
5. Conclusion
Chapter 30. Werner Method
1. Introduction
2. Majorizing Sequences
3. Semi-Local Convergence
4. Numerical Experiments
5. Conclusion
Chapter 31. Yadav-Singh Method of Order Five
1. Introduction
2. Semi-Local Convergence
3. Local Convergence
4. Numerical Experiments
5. Conclusion
Chapter 32. Convergence of a P+1 Step Method of Order 2P+1 with Frozen Derivatives
1. Introduction
2. Local Convergence
3. Numerical Experiments
4. Conclusion
Chapter 33. Efficient Fifth Order Scheme
1. Introduction
2. Ball Convergence
3. Numerical Experiments
4. Conclusion
Chapter 34. Sharma-Gupta Fifth Order Method
1. Introduction
2. Convergence
3. Numerical Experiments
4. Conclusion
Chapter 35. Seventh Order Method for Equations
1. Introduction
2. Convergence
3. Numerical Experiments
4. Conclusion
Chapter 36. Newton-Like Method
1. Introduction
2. Mathematical Background
3. Majorizing Sequences
4. Semi-Local Convergence
5. Numerical Experiments
6. Conclusion
Chapter 37. King-Type Methods
1. Introduction
2. Majorizing Sequences
3. Semi-Local Convergence
4. Numerical Experiments
5. Conclusion
Chapter 38. Single Step Third Order Method
1. Introduction
2. Semi-Local Analysis
3. Local Convergence
4. Numerical Example
5. Conclusion
Chapter 39. Newton-Type Method for Non-Differentiable Inclusion Problems
1. Introduction
2. Majorizing Sequences
3. Analysis
4. Conclusion
Chapter 40. Extended Kantorovich-Type Theory for Solving Nonlinear Equations Iteratively: Part I Newton’s Method
1. Introduction
2. Convergence of NM
3. Conclusion
Chapter 41. Extended Kantorovich-Type Theory for Solving Nonlinear Equations Iteratively: Part II Newton’s Method
1. Introduction
2. Convergence of NLM
3. Conclusion
Chapter 42. Updated and Extended Convergence Analysis for Secant-Type Iterations
1. Introduction
2. Convergence of STI
3. Conclusion
Chapter 43. Updated Halley’s and Chebyshev’s Iterations
1. Introduction
2. Semi-Local Convergence Analysis for HI and CI
3. Conclusion
Chapter 44. Updated Iteration Theory for Non Differentiable Equations
1. Introduction
2. Convergence
3. Conclusion
Chapter 45. On Generalized Halley-Like Methods for Solving Nonlinear Equations
1. Introduction
2. Majorizing Convergence Analysis
3. Semi-Local Analysis
4. Special Cases
5. Conclusion
Chapter 46. Extended Semi-Local Convergence of Steffensen-Like Methods for Solving Nonlinear Equations
1. Introduction
2. Majorizing Real Sequences
3. Convergence
4. Conclusion
Glossary of Symbols
Index